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For reasons of tractability, the airline scheduling problem has traditionally been sequentially decomposed
into various stages (e.g., schedule generation, fleet assignment, aircraft routing, and crew pairing), with
the decisions from one stage imposed upon the decision making process in subsequent stages. Although this
approach greatly simplifies the solution process, it unfortunately fails to capture the many dependencies between
the various stages, most notably between those of aircraft routing and crew pairing, and how these dependencies
affect the propagation of delays through the flight network. Because delays are commonly transferred between
late running aircraft and crew;, it is important that aircraft routing and crew pairing decisions are made together.
The propagated delay may then be accurately estimated to minimize the overall propagated delay for the
network and produce a robust solution for both aircraft and crew. In this paper we introduce a new approach to
accurately calculate and minimize the cost of propagated delay in a framework that integrates aircraft routing
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and crew pairing.
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1. Introduction

The airline scheduling problem involves the construc-
tion of timetables for an airline’s major resources,
namely, aircraft and crew. Traditionally, this has been
undertaken with a view toward maximizing an air-
line’s overall profit, often with limited consideration
given to the stability of such a schedule or indeed
its operational robustness. Such an approach has a
tendency to generate schedules that are highly brit-
tle, performing poorly in practice as delays propagate
rapidly throughout the network. The Bureau of Trans-
portation Statistics (2010) states that in 2009, approx-
imately 23% of flight legs operated by a major U.S.
airline were delayed—with late arrivals and cancel-
lations combined accounting for more than 7.5% of
this delay. In recent years, this has resulted in an
ever increasing discrepancy between planned costs
and realized operational costs. As aircraft networks
continue to grow, this trend is set to continue, with
AhmadBeygi, Cohn, and Lapp (2008) reporting that
in 2006, it was estimated that the U.S. airline indus-
try experienced a total of 116.5 million minutes of
delay, translating into a $7.7 billion increase in oper-
ating costs. Such large discrepancies have prompted

airline schedule planners to shift their focus from
maximizing profit to maximizing expected profits
under uncertainty, by including various types of costs
arising from unplanned events.

1.1. The Airline Scheduling Problem

The airline scheduling problem in its entirety is very
complex. The vast number of rules and regulations
associated with airports, aircraft, and crew combined
with the global expanse of air traffic networks require
the problem to be broken into manageable pieces to
maintain some degree of tractability. Consequently,
the traditional airline scheduling problem is typically
decomposed into four stages, with the output of one
stage used as the input for the subsequent stage(s).
The very first stage is known as the schedule genera-
tion problem. In this step, an airline seeks to construct
a schedule of flights where each flight is specified
by an “origin, destination, departure date, time, and
duration” (Weide, Ryan, and Ehrgott 2009). The ori-
gin and destination of each flight leg (known as an
OD pair), and additionally the frequency with which
they are flown, are determined by the market demand
for such pairs and availability of aircraft resources.
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The second stage, known as fleet assignment, assigns
a particular aircraft type (or fleet) to each flight leg,
to appropriately match the size of the aircraft to the
intended range (e.g., long-haul versus domestic) and
the expected number of passengers. Typically, the
objective is to maximize profit via the minimization
of operating expenses and number of spilled pas-
sengers. The third stage, known as aircraft routing, is
performed separately for each specific fleet type to
obtain a minimal cost assignment of aircraft to flights
that ensures each flight is covered exactly once by
exactly one aircraft. An aircraft routing is assigned
to each aircraft, with each routing satisfying neces-
sary maintenance requirements. Finally, the last stage,
known as crew pairing, is also performed separately
for each fleet type because crew typically may only fly
on board a specific fleet. The objective of crew pair-
ing is to find a minimal cost assignment of crew to
flights. A set of crew pairings is constructed that sat-
isfies union regulations (such as the 8-in-24 rule)' and
ensures each flight is covered exactly once by exactly
one crew group.

1.2. Integrated Methods
The sequential solution approach, although easier to
solve, may result in suboptimal solutions because
decisions fixed early in the process can limit flexibil-
ity in subsequent stages. This is primarily the result
of the many interdependencies between the various
stages. In a bid to more accurately model the airline
scheduling problem, various authors have recently
attempted to integrate two or more of these stages.
Authors such as Desaulniers et al. (1997) and Rexing
et al. (2000) have attempted to integrate the sched-
ule generation process with fleet assignment via the
discretization departure time windows for each flight,
providing greater flexibility and possibly a more prof-
itable solution. Klabjan et al. (2002) and Lan, Clarke,
and Barnhart (2006) perform a similar integration
with crew pairing and aircraft routing, respectively.
Sandhu and Klabjan (2007) note that the standard
fleet assignment problem is solved with no consid-
eration given to its impact on the quality of the
crew pairing solution. To capture this dependency, the
authors propose a model that integrates fleet assign-
ment and crew pairing while maintaining the pos-
sibility of feasible aircraft routings by way of plane
count constraints. Barnhart et al. (1998b) propose an
approximate integrated model for fleet assignment
and crew pairing.

Similar problems exist between the two stages of
aircraft routing and crew pairing. Because aircraft

! The 8-in-24 rule is imposed by the Federal Aviation Administra-
tion (FAA) and requires that crew be given additional rest should
the total flying time of a pairing exceed 8 hours in a 24-hour period.
See Barnhart et al. (2003) for further details.

routing is typically fixed first, the solution requires
the crew to change aircraft many times through-
out the course of a duty period, which may allow
delays to propagate rapidly throughout the network.
To address this, Cordeau et al. (2001) integrate aircraft
routing with crew pairing, using linking constraints
to ensure that a crew does not swap aircraft if there
is insufficient connection time. The problem is solved
via Benders decomposition. Klabjan et al. (2002) par-
tially integrate aircraft routing with crew pairing. The
authors solve the problem sequentially, adding plane
count constraints to allow a feasible aircraft routing
to be obtained. The authors also include time win-
dows to allow greater flexibility within the crew pair-
ing problem. Mercier, Cordeau, and Soumis (2005)
improve upon the method of Cordeau et al. (2001)
through the introduction of so-called restricted con-
nections. The authors allow restricted connections but
apply a penalty if both legs are covered in sequence
by the same aircraft. The authors improve the speed
of convergence by reversing the order in which the
problems are solved so that the crew pairing is instead
solved in the master problem. Mercier and Soumis
(2007) improve upon this further via the inclusion
of time windows, in an attempt to integrate three
aspects of the scheduling problem. Papadakos (2009)
integrates aircraft routing with crew pairing and re-
timing (via time windows) and proposes an enhanced
Benders decomposition, making use of a heuristic to
circumvent the so-called tailing off effect associated
with column generation to speed up convergence.
Papadakos also notes that retaining the crew schedul-
ing problem within the Benders subproblem leads to
greater numerical efficiency.

1.3. Robust Planning
As mentioned in the introduction, airline delays have
increased dramatically in the last few years, result-
ing in ever increasing revenue losses for airlines
(AhmadBeygi, Cohn, and Lapp 2008). For example,
the average delays per flight in Europe increased dra-
matically from 12 minutes in 2006 to 28 minutes in
2009 (Eurocontrol 2006, 2009). Until recently, the pri-
mary focus of airline schedule planners was simply
one of maximizing profit. However, because aircraft
and crew are only profitable for an airline while
they are in the air, the schedules generated by such
an approach often contain very little slack between
connectingflights for the absorption of delays. Con-
sequently, in networks with a large number of con-
necting resources, delays can propagate very rapidly
throughout the network. This in turn leads to signifi-
cant recovery costs for an airline.

This ever increasing discrepancy between planned
costs and realized costs has prompted airline schedule
planners to shift their focus from maximizing profit to



PN
@,
S
1)
24
5 €
:l—
T o
Ke)
o S
=%
©
=
S
22
X
> o
O +
o <
-
© ©
nQ
e
>=
27
8w
2
£g
55
5
‘_QQ-
T c
® .9
S 3
52
e E
© O
o
o2
T ®©
T o
)
.=
o
2c
a— O
< 5
O O
=
E -
c
[e]
B e
S =
SKe)
<E
w_
©
= C
e o
=
35
z-c
=<

Dunbar, Froyland, and Wu: Minimizing Delay in an Integrated Routing and Crewing Model

206

Transportation Science 46(2), pp. 204-216, ©2012 INFORMS

maximizing expected profits that include some costs
due to unforeseen events. In contrast to airline recov-
ery, where the objective is to achieve the best course
of action after an incident or delay has occurred, the
focus of robust planning is to incorporate or establish
an in-built level of robustness to unexpected occur-
rences. We outline a few approaches below. Ageeva
(2000) proposes a model that maximizes the number
of times different aircraft routes “meet.” This pro-
vides an opportunity for aircraft to swap routes and
return to their original route at some point in the
future. This may prove beneficial if one aircraft is
late and the other aircraft’s connection has a greater
slack. Rosenberger, Johnson, and Nemhauser (2004)
propose a robust fleet assignment and aircraft rout-
ing model that produces a large number of short
cycles with a low hub connectivity. A larger num-
ber of shorter cycles assists in preventing one sin-
gle cancellation from causing a string of cancellations
throughout the course of day. Schaefer et al. (2005)
solve a deterministic crew pairing problem where the
costs of each pairing are estimated via a simulation
tool known as SimAir. Yen and Birge (2006) extend
this approach, using a two-stage stochastic program
to develop a robust crew pairing model. Their model
identifies disruptions resulting from the first stage
assignment decisions and their (nonlinear) recourse
model reflects interactions between long-range plan-
ning decisions and short-range operational results.
Chebalov and Klabjan (2006) propose a model that
seeks to maximize the number of opportunities for
crews to be swapped during operations. Smith and
Johnson (2006) propose a model where the number of
different fleet types allowed to serve each airport is
limited; this is called “imposing station purity.” Smith
and Johnson (2006) demonstrate that this approach
provides solutions that are robust for crew plan-
ning, maintenance planning, and operations in gen-
eral; however, this approach requires significant com-
putational time.

Lan, Clarke, and Barnhart (2006) develop a robust
aircraft routing model to minimize the expected
propagated delay along aircraft routes. They use an
approximate delay distribution to model the delay
propagation along each string and use a branch and
bound technique to solve their mixed integer pro-
gram (MIP). Lan, Clarke, and Barnhart (2006) calcu-
late propagated delay along individual strings when
determining costs for the restricted master problem,
but omit considerations of delay when solving the
subproblem. The effect of connecting resources (such
as crew and passengers) are not considered. Instead of
estimating delay propagation, Wu (2005) used a simu-
lation model to calculate random ground operational
delays and airborne delays in an airline network. Wu

(2005, 2006) shows that delays are inherent in air-
line operations because of stochastic delay causes,
e.g., passenger connections and late baggage loading.
By adjusting flight times without changing aircraft
routing, Wu (2006) revealed that significant delay
(cost) savings can be achieved via robust schedul-
ing. Weide, Ryan, and Ehrgott (2009) propose an inte-
grated aircraft routing model for which the solution
is obtained iteratively. The authors propose a nonro-
bustness measure and initially solve the crew pair-
ing problem without taking into account an aircraft
routing solution. Their model then seeks to maxi-
mize the number of restricted connections contained
in the aircraft solution that are also operated in the
current crew pairing solution. Once this solution has
been obtained, they minimize the number of restricted
aircraft changes. This process continues iteratively,
increasing the crew penalty at each iteration until the
nonrobustness measure cannot be improved further.
The advantage of this approach is that the compu-
tational complexity is not increased as in other inte-
grated models. AhmadBeygi, Cohn, and Lapp (2008)
make use of a propagation tree to minimize delay
propagation because of flights and crew pairs in an
existing routing and crew pairing solution by retiming
flights so that the slack present in the network is real-
located to where it is required most. Their approach
is limited to retiming and both under- and overesti-
mates the delay propagation in certain cases.

1.4. Outline of This Paper
Our aim is to improve upon the following short-
comings of AhmadBeygi, Cohn, and Lapp (2008);
Lan, Clarke, and Barnhart (2006); and Weide, Ryan,
and Ehrgott (2009). First, although Lan, Clarke, and
Barnhart (2006). correctly calculate propagated delay
of aircraft strings in their master problem, the selec-
tion of these new columns is carried out more crudely:
new columns are generated within the subproblem
without considering the delay cost of the new col-
umn. The authors only make use of the dual vari-
ables from the master problem when determining the
minimal cost column. Once a column has been gen-
erated, they then calculate the propagated delay cost
along the string and decide whether to add it to the
restricted master problem. Furthermore, they ignore
the effect of connecting resources such as crew and
passengers. Second, although AhmadBeygi, Cohn,
and Lapp (2008) consider (in a retiming setting) the
combined delay effects from crew and from aircraft,
their approach imperfectly calculates how delays are
propagated, resulting in possible under- or overesti-
mates of the true propagated delay. Their improve-
ments are also limited to those achievable by retiming.
Finally, Weide, Ryan, and Ehrgott (2009) treat the
interactions of crew and aircraft in an iterative fash-
ion, optimizing a robustness measure, which is an
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indirect means of assessing the true cost of total prop-
agated delays of aircraft and crew. The model in
Weide, Ryan, and Ehrgott (2009) attempts to keep
aircraft and crew together over restricted connec-
tions, to try to minimize the number of restricted
aircraft changes. Although Weide, Ryan, and Ehrgott
(2009) take into account the connection time, penaliz-
ing shorter restricted aircraft changes more severely,
their model penalties are time-of-day independent,
independent of historical information for the network,
and do not quantitatively assess the propagated delay
from the interactive connectivity of the routing and
crewing networks. For example, there may be rela-
tively predictable large primary delays over certain
connections or at certain times of the day, or the
effects of delays for some connections are much worse
in a propagated sense than for other connections,
depending on the interactive network topology. Our
approach explicitly utilizes time-of-day historical pri-
mary delays and explicitly calculates and minimizes
the downstream effect of delay in the combined rout-
ing and crewing network. Solutions developed from
our approach may (for example) mismatch aircraft
and crew on a restricted connection if later connec-
tions have ample slack to absorb delays. This mis-
match may free up the possibility to match crew and
aircraft on a critical connection that has tight con-
nections further downstream. We provide a quantita-
tive comparison of our approach and the approach of
Weide, Ryan, and Ehrgott (2009) in §4.

The key ingredients of our approach are (i) the
accurate calculation of the combined effects of propaga-
tion of delay along aircraft routing strings and crew
pairing strings and (ii) the use of this information for
both the calculation of the cost of columns and the
dynamic selection of optimal columns.

In §§2.1 and 2.2 we briefly outline standard column
generation approaches to finding minimum cost air-
craft routings and crew pairings, respectively. In §2.3
we describe our approach for accurately calculating
the propagated delay of routing and crewing strings.
In §2.4 we detail how to calculate propagated delay in
a combined routing and crewing network, and in §2.5
we describe the setup of our pricing problems. Sec-
tions 3.1 and 3.2 describe our numerical approaches
for solving the master and pricing problems, respec-
tively. Computational results are presented in §4, and
we conclude with suggestions for future work in §5.

2. The Integrated

Problem Formulation
In this section we describe our formulation for the
integrated aircraft routing and crew pairing prob-
lem; the objective is to minimize the total cost asso-
ciated with propagated delay. We first outline the

mathematical formulation of the aircraft routing and
crew pairing problems individually and then discuss
estimation of propagated delay and the correspond-
ing pricing problem. We concentrate solely on costs
because of delays with the understanding that in
practice, the additional costs from unplanned delays
can form part of an overall model of cost for the air-
line. We thus view our proposed methodology as a
potential add-on to existing connection-based optimi-
sation models to better reflect planned costs under
uncertainty.

2.1. Aircraft Routing

The aircraft routing problem is performed separately
for each specific fleet type. We seek a minimal cost
assignment of aircraft to flights where each flight is
covered exactly once by exactly one aircraft. The costs
will represent the cost of the total delay incurred by
the aircraft over a 24-hour period.

In the following routing model, we calculate a one-
day schedule where each aircraft begins and ends its
day at a maintenance base. Maintenance feasible rout-
ings are represented as columns of an m x ny binary
matrix AR, where m is the number of flights and 7y is
the total number of feasible routings. The (i, j)th ele-
ment of AR takes the value one if flight i is contained
in routing j and zero otherwise. In practice there may
be an extremely large number of feasible columns, so
column generation is used to generate only the bene-
ficial columns. For each flight (node) we assign a dol-
lar cost per unit of delay arriving at that flight, and
the cost c}z of column j is the sum of the costs of the
delays along string j. The decision variable x} takes
the value one if routing j is included in the optimal
solution and zero otherwise. There is also an upper
bound on the number of aircraft N. Thus we may
state the aircraft routing problem as follows:

minimize:  (c®)Tx® (1)
Subject to:  Afx®=e

1R

Y xf<N

i=1

xR e {0, 1}
where e is an m-dimensional column vector of ones.

2.2. Crew Pairing

The crew pairing problem is also performed sepa-
rately for each fleet type because crew typically may
only fly on board a specific fleet. The objective of
crew pairing is to find a minimal cost assignment of
crew to flights. As in the routing problem, the costs
will represent the dollar cost of the total propagated
delay incurred by the crew. The airline from which
we source our data uses both pay-and-credits (for
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cabin crew) and flying hours (for pilots) as crew pay-
ment bases. For the purposes of this paper, we use
the flying-hour-based crew costing model, which sim-
plifies our crew costing model. A feasible set of crew
pairings must satisfy union regulations (such as the
8-in-24 rule) and ensure each flight is covered exactly
once by exactly one crew group. In the following crew
pairing model, we assume a one-day schedule where
the crew is restricted to flying a total of less than
eight hours in each pairing (8-in-24 rule) and ensure
that at the end of its duty, each crew pairing returns
to the crew base at which it started. This modified
8-in-24 assumption for a one-day schedule simplifies
our crew pairing model. One could relax this assump-
tion and expand the schedule to one week during
implementation. As for the aircraft routing problem,
the pairings may be represented as columns of an
m x np matrix A", where m is the number of flights
and #p is the total number of feasible crew pairings.
We use column generation to generate the most ben-
eficial columns. The element c; denotes the cost of
column j and is defined as in the aircraft routing prob-
lem above. Thus, we may state the crew pairing prob-
lem as follows:

minimize: (c")"x” 2)
Subject to:  APx" =e

p

Yxl <M

where e is an m-dimensional column vector of ones.
There is typically no upper bound placed on the num-
ber of crews in the standard crew pairing problem.

2.3. Estimation of Propagated Delay

The calculation of total propagated delay along an air-
craft string in an aircraft connection network or along
a crew string in a crew connection network is nontriv-
ial. The model of delay propagation we use for indi-
vidual strings is based on a simplified version of Wu
(2005, 2006) and is similar to the calculation of delay
cost in individual strings used by Lan, Clarke, and
Barnhart (2006). We outline our modeling approach
for calculation of propagated delay in the isolated
routing and crewing networks before describing how
to calculate propagated delay in a combined network
in the next subsection.

Let G = (W, o) be a directed acyclic graph with a
single source node so and a single terminal node t. The
source and terminal nodes are dummy nodes that link
to both the morning and evening flights, respectively.
In this graph, nodes correspond to flights and arcs
correspond to possible feasible connections between
flight nodes. For simplicity of exposition, we use the

same connection network for both aircraft and crews,
although one may use different arc sets if necessary.

Each connection (i, j) € ¢, will have associated with
it two primary delays. The primary delay for aircraft
connection (i, j) is denoted pl’-} and is the sum of the
expected en-route delay for flight i (estimated from
historical data) and primary delays during aircraft
turnaround operations, such as passenger connection
delay and ground handling delay. Note Pth =0 for
all (j,t) € s{. The primary delay for crew connection
(i,7) is denoted pf and is the sum of the expected
en-route delay for flight i and other crew related pri-
mary delays during aircraft turnaround time, such
as late crew boarding and crewing procedures. En-
route delays and turnaround delays occur for a vari-
ety of reasons such as weather conditions, air traffic
flow management, passenger delays, equipment fail-
ure, and so on. These delays and their causes are doc-
umented by airlines by using the International Air
Transport Association (IATA) delay coding system or
its in-house variant IATA (2010). Note pﬁ =0 for all
(j, t) e

The flight schedule is the starting point for calculat-
ing slack for individual connections. The slack s; for a
connection (i, j) is the difference between the sched-
uled arrival time of flight i and the scheduled depar-
ture time of flight j, minus the mean turnaround time
for the relevant aircraft type under the specific ground
handling procedure of the airline. The value of the
mean turnaround time is determined by the standard
aircraft ground operating procedures of a specific
fleet by an airline. Airlines design aircraft turnaround
time based on the mean turnaround time and buffer
allowance. For simplicity we have used the same
turnaround time for all connections because all air-
craft belong to the same fleet and operate on a domes-
tic network. It is, however, straightforward to specify
specific turnaround times for individual connections
should this be required for an alternative network. All
slacks s, ; =0, (so,i) € 4, and s;, =0, (j, t) € 5.

We now come to the propagated delay at node i,
denoted d;. We fix the initial delay at the source node
d,, =0 and inductively apply the formulae below to
calculate propagated delay along a path in the aircraft
connection network:

dﬁ:max{d?-(sq_ps)/ 0}/ ]'#SO, (3)
and in the crew connection network,
df = max{d] — (s; —pf),0}, j#so. (4)

2.4. Estimation of Combined Propagated Delay

In the previous section we saw how to calculate propa-
gated delay along a path from the source node so. The
delays along an aircraft string were only affected by
aircraft delays in that string and not by delays because
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of connecting crew. Similarly, delays along a crew pair-
ing were only affected by crew delays in that string
and not delays because of connecting aircraft. We now
describe in more detail how we model the interaction
between the routing and crewing problems and its
effect on the pricing problems to be solved.

First, we consider the effects of crew delays on the
aircraft connection network. We assume that we are
presented with a feasible set of crew strings and that
propagated delays because of the crew have been cal-
culated (to initialize the procedure, we will use (4) to
calculate the d?, i € ). To calculate the propagated
delay along an aircraft string, taking into account prop-
agated delays from crew, we inductively apply

df=max{d§_(Sij_Pg)/df_(skj_PZ)ro}/ j#so, (5)

where the connection (i, j) is part of the aircraft string
and the connection (k, j) is part of the crew string that
includes flight ;.

Thus, if flight j uses the same aircraft as flight i and
the same crew as flight k, the delay propagated to
flight j is the maximum of the delays of the aircraft
and crew (or zero, if both delays are negative); see
Figure 1 for an example.

Second, we consider the effects of aircraft delays on
the crew connection network. We assume that we are
presented with a feasible set of aircraft strings and
that propagated delays because of the aircraft have
been calculated (to initialize the procedure, we will
use (3) to calculate the dX, i € ). As above, to calcu-
late the propagated delay along a crew string, taking

d¥ | df
-_ ! -_———
! | i |
| i I i j I
I I | I
_ . ; L
Si=Pij !
|
e
' T
| k |
1 ]
R S
AR
I
Sk —Phi di—(si—pty)

Figure 1 Illustration of the Requirement of the Maximum in

Equation (5)

Notes. Aircraft and crew are denoted by grey and black rectangles, respec-
tively. The solid black vertical line denotes the scheduled departure time for
flight j. Dashed lines and rectangles represent the amount by which the air-
craft and crew are delayed. Notice that although flight / is delayed, there is
enough slack between flights / and j to absorb this delay. However, there is
not enough slack between flights k and j for the crew on flight & to arrive in
time for flight j. Thus, df — (s,; — pf;) > 0 and df > 0.

into account propagated delays from aircraft, we induc-
tively apply

d} =max{d{ —(s;—py), df — (s —py), 0}, j#so, (6)

where the connection (i, j) is part of the crew string
and the connection (k, j) is part of the aircraft string
that includes flight ;.

2.5. The Pricing Problems

We now describe the pricing problems for the rout-
ing and crewing master problems. When solving the
routing subproblem, the propagated routing delays
df, i € N, will be calculated dynamically as part of
the subproblem using fixed precalculated propagated
crewing delays df, i € /.. When solving the crew-
ing subproblem, the reverse is true; the propagated
crewing delays d! are dynamically calculated and the
crewing delays dR are precalculated and fixed.

Each node i possesses a weight —w;, correspond-
ing to the dual multiplier for constraint i in the
master problem; we denote by —wf} the weights
from the routing master and by —w?! the weights
from the pairing master. We assume that for every
unit of time an aircraft (respectively, crew) is late at
node i, a dollar cost af >0 (respectively, al > 0) is
incurred. These costs are combinations of costs asso-
ciated with excess fuel consumption, overtime pay
for crew, and reaccommodating misconnecting pas-
sengers (AhmadBeygi, Cohn, and Lapp 2008).

Finally, for the route pricing (respectively, crew
pricing) we add approximate reduced cost terms to
represent the impact of inserting a particular route
(respectively, crew string) on overall crew delay (res-
pectively, routing delay). We describe these ideas for
the routing pricing problem; the approach for the
crew pricing problem is completely analogous. Con-
sider node j and suppose that our incumbent rout-
ing solution has a connection (/, j) and our incumbent
crewing solution has a connection (k,j). The com-
bined propagated routing and crewing delays at node
j are given by

d]l‘QZmaX{le_(slj_pg‘)r dllcj_(skj_pllcjj)/o}r (7)
d;) :max{d}: — (84 _pll:j)/ dr — (s —P?')/ 0}- 8

Suppose that in the current routing pricing prob-
lem we consider replacing the aircraft connection (!, j)
with (i, j). We calculate df along the routing string
being constructed using (5). If this potential replace-
ment string is inserted into master problem basis,
there will be an impact on the crew delays. Using (6),
at node j, the new (locally calculated) crew delay is
given by

‘ijpl = max{dy — (85— PJZ')/ dif — (sij — Pf}), 0}; 9
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where the tilde is used to denote a temporary calcula-
tion local to node j, using the information that i is the
prior node. We will use a? (d]P —dy’) as an estimate of
the reduced cost for crew delay attributable to node j
for the routing string under construction.

Thus, for the aircraft routing pricing problem we
wish to find a path 7 ={so,i;,1,,...,t} from so to t
that minimizes

z _mm!Z(uRdR+w -HIP(dHT ) —d7)):

e

7 is a path from so to t}, (10)

where 77 (7) denotes the node prior to i in path 7 and
with the further restriction that the path 7 begins and
ends at a maintenance base.

For the crew pricing problem, a completely anal-
ogous procedure is used to construct the reduced
cost estimate af(dR ;) — @) for the routing delay,
attributable to node 7 from the crew string under
construction.

For the crew pairing pricing problem, we impose
the additional upper limit H on the number of hours
worked.

z —mm{Z(anp—}-w +al(dl o —d7)):7 is a path

1em

from so to t; total hours worked < H.}, (11)

with the further restriction that the path 7 begins and
ends at the same crew base.

Upon obtaining a solution to (10) (respectively,
(11)), the minimizing path (or string) forms a column
A; of the matrix A® (respectively, A").

A routing string is assigned a cost of

cf =zR— Z wk,
= 2(afdf +a (d] ) — d})) (12)
iem
and a crew pairing string is assigned a cost of
— Y,
= Y@l al(d, o -db).  (19)

In §3.2 the z® and z” minimizing paths are deter-

mined by a modified label setting algorithm that

simultaneously calculates both the reduced cost of the
path and the propagated delays.

3. Computational Approach

In this section we describe our iterative approach for
handling the two master problems of aircraft routing
and crew pairing, and our computational approach
for solving the pricing problem.

3.1. Integrating Aircraft Routing and Crew Pairing
We seek a minimal propagated delay cost solution
to the integrated aircraft routing and crew pairing
problem. It is well known (e.g., Barnhart et al. 1998a;
Weide, Ryan, and Ehrgott 2009) that both the aircraft
routing and crew pairing problems are individually
NP-hard. To avoid any additional complexity, we
adopt the theme of modeling the interactions between
the aircraft and the crew in an iterative way from
Weide, Ryan, and Ehrgott (2009). In the first version
of our approach, we solve the integrated problem
iteratively, beginning with the aircraft routing prob-
lem linked to output from a crew pairing problem,
then switching to the crew pairing problem linked to
new output from the aircraft routing problem, and
so on. We call this first approach Iterative Case A.
This approach is not exact; however, we have care-
fully modeled the crew and aircraft delay interactions
and expect to obtain solutions of good quality. In §4
we demonstrate that we achieve significant improve-
ments over standard approaches and our solutions
also compare well against a rigorous lower bound.
We also study Iterative Case B, where the initial iter-
ation begins with the crew pairing problem linked
to output from an aircraft routing problem, and then
proceeds to iterate as in Case A. The pricing problem
solution approach is described in the next subsection.

We begin by introducing an updating algorithm
that ensures stability of the propagated delays in the
combined routing and crewing network.

Algorithm 3.1 (Propagated Delay Evaluation)

1. Perform a topological sorting of the flight nodes
so that the flights are sorted from earliest to latest.

2. Using the strings from the incumbent routing
and crew pairing solutions, update df and d! together
by inductively applying Equations (5) and (6); mov-
ing strictly forward in time throughout the day.

Algorithm 3.2 (Iterative Case A)
1. Initialization:

(a) Solve problems (1) and (2), respectively, with
the objective of determining the minimum number of
aircraft N and the minimum number of crew required
M to cover all flights exactly once. We now have
incumbent routing and crewing solutions.

(b) For each arc (i, j) € 4, assign expected pri-
mary delays pjf and pj.

(c) Set df =0, df =0 for all k € /' and d¥ =0
d? =0. Set an iteration counter ¢ =0.

2. Minimum Delay Aircraft Routing:

(a) Apply Algorithm 3.1.

(b) Assign delay costs to strings using (12). Solve
problem (1) via column generation with the objective
of minimizing the total delay cost to produce a new
incumbent routing solution.
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3. Minimum Delay Crew Pairing:

(a) Apply Algorithm 3.1.

(b) Assign delay costs to strings using (13). Solve
problem (2) via column generation with the objective
of minimizing the total delay cost to produce a new
incumbent crew pairing solution.

4. If either the aircraft routing or crew pairing solu-
tion has changed, increment iteration counter c —
c¢+1 and return to Step 2. Otherwise, go to Step 5.

5. Return Y0, Y pr afdf + 30 3 v al df, where
mX is the routing string for the nth aircraft, n =
1,...,N, and ! is the crew pairing string for the m"
crew,m=1,..., M.

Algorithm 3.3 (Iterative Case B)
Perform as for Algorithm 3.2, interchanging Steps 2
and 3.

3.2. Solving the Pricing Problem

We describe the methodology to solve the pric-
ing problem (10); the problem (11) requires straight-
forward modifications described at the conclusion of
this section. For each i € N, we are given a dual
multiplier —w! (—w® = —wk =0), a per unit delay
cost af (ak = al =0), and propagated delays for crew
pairings d’. We wish to solve (10), where the dX are
calculated via (5). Because the delay dX is not a sim-
ple sum of delays along the path from so to i, the
problem (10) is not easily cast as a minimum cost
network flow. We propose a label setting algorithm,
augmented by a notion of label dominance, modi-
fied from related problems in Desrochers and Soumis
(1988) and Dumitrescu and Boland (2003), that works
efficiently in the cases tested.

Let 7 be a (full) path in G (an ordered collection
of nodes {so, iy, 1, ..., 1., t} in N with (so, i), (i, t) €
s and (i}, i,4) € d forall I=1,...,9—1). For i e
7, let (i) denote the ordered collection of nodes
in the path 7 truncated so that the final node in
the list is i; we will also call 7(i) a path. Define

77(1) =Y jen( ,)(w + ap( dR)) Denote by dﬁ(l)
the propagated expected routmg delay at node i, com-
puted along path 7(i) using (5), and define A%, =

Ljen( @ ] ﬂ(])
In this terminology, we may rewrite (10) as

z =min{A,T(t)+Ww(t)' 7 is a path from so to t}. (14)

Because of the nonlinear nature of the propagated
routing delay formula (5), our labels must track both
the accumulated cost A%, +WJ ) at node i along path
7 and the propagated delay 47, . This motivates the

following dominance conditions for labels.

DEerFINITION 3.4 (DOMINANCE ConDITION). The pair
fj(l){r l)a‘pfel) (AR5 + Wi, 4d5 ;) dominates (AR, +Wx.,
n(i)) t

Azy+ Wiy < Ay + W,

77(1

and d <dR

n(l (i) = “n(i)

and the labels are not identical.

LEmMaA 3.5. Let @ be a path from j to k, where (i,j)e
si. If (AR + W, ,,(l)r dy ) dominates (A} dyi),
R

n(l n(l

R
theﬁ (A“T(i)’zz Wlw(l),w], df ), ) dominates (AR ) +
I/v{w(i),w}’ dln(i),w})‘

Proor. We show that this is true if i connects to j
by a single arc (the path @ consists of a single node
{j}); the result then follows by induction. Recall we are
given a fixed set of crew pairing strings. Let £ denote
the crew pairing string that includes flight node j and
let k be the node in ¢ preceding j. Thus,

R R R P P
iz, =max{dzg) — (5= i), degy — (s — i), 0},
and
R R R P P
iy, ) = max{dy — (s = pj), dig — (5 — i), O}
R
Because dw(l <dR (i) ON€ has d (i), d[n(i)lj]
Now
R
Aley, )t Wiz, 5y = Ary + Waty T 472,
+w4 +aP( ]-;i—df) and
R R 3R
Al 11+ Wy, 5y = +Woo +a7d5a, )

R P R
Tw; +“f (df; —df),

and we are done. O

In particular, if @ terminates at ¢, the above lemma
shows that Afg) o) + Wiagy,o) < Afy,m + Win,o
In our labeling algonthm described below, we may
therefore at each node only create labels for those
paths that are not dominated by any other path at

that node. We call such labels efficient.

DEFINITION 3.6. A label (A%, + WX, dX ) atnode i
is said to be efficient if it is not dominated by any other
label at node i. A path (i) is said to be efficient if
the label it corresponds to at node i is efficient.

We now describe the label setting algorithm we use
to solve the problem (14). At a node i € ., the current
collection of labels is denoted I; and the current col-
lection of treated labels we denote by M. Because the
dominance condition does not allow identical labels
at a node i, each label in I; will correspond to a unique
path (say (7)) from so to i. For brevity, we will there-
fore denote individual elements of I; and M; as paths
such as (7).

Algorithm 3.7 (Label Setting Algorithm for the Air-
craft Routing Problem)
1. Initialization:
Set I, = {so} and [; = & for all i € ¥\{so}.
Set M; = & for each i € V.
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2. Selection of the label to be treated:
if U (I\M;) = @ then go to Step 4; all efficient
labels have been generated.
else choose i € /' and (i) € [[\M; so that Aﬁ(i) +
Ww(l) is minimal.
3. Treatment of label (AR, +WZX,, d= )
for all (i, j) e o

if (A{ﬂ(l) ]} + WW(I d#(i),j}) is not dominated
by (Ay;) + Wy, dy;) for any n(j) € I; then
set [; _I U{w(z),]}
end do
Set M; := M; U{m(i)}.
Go to Step 2.

4. Return argmin, ¢, A% + WS,

We now describe the modifications required to
solve the corresponding problem for the crew. Define
Triy = 2jen( tj, Where t; is the scheduled time that
crew work on ﬂlght j. We denote the allowed upper
limit of continuous scheduled crew work time by H.
Equation (11) can be written as

z"=min{A7 ,+W.,: 7 is a path from

sotot, T,,y<H}. (15)

DerINITION 3.8. (DOMINANCE CONDITION). The pair
(or label) (A% + WX, dx, Tnp) dominates (AX
Wik Aoy Ty if

AR

(i

n(l

)+W < AR

(i

R
y+ Wy, and dw(l) < dn(l and
Ty = Ty
and the labels are not identical.

In Algorithm 3.9 we do not propagate paths to a
node i if T, > H.

Algorithm 3.9 (Label Setting Algorithm for the Crew
Pairing Problem)

Perform as in Algorithm 3.7, replacing R super-
scripts by P superscripts throughout and replacing
the if clause in Step 3 with

if T, < H hours and (A
Ty, 1) 1s not dominated by (A
for any n(j) € I; then

P
'n'(z d

n0) + W ’dn(J)’ n(n)

One could try to improve the efficiency of Algo-
rithms 3.7 and 3.9 by, for example, using ideas from
Dumitrescu and Boland (2003) for Algorithm 3.9.
We found the algorithms to be efficient on the
instances tested and therefore have not explored fur-
ther possible improvements.

4. Numerical Results

To evaluate the effectiveness of our proposed iterative
approach, we apply Algorithm 3.2 to a one-day sched-
ule on a real airline network consisting of 54 flights
and 128 feasible connections.

We determine that the minimum number of air-
craft and crew pairs required to cover this network
are 10 and 16, respectively, by solving (1) and (2).
For simplicity we assume that all aircraft, crew, and
connections incur similar operating costs, and thus
the minimum number of aircraft and crew pairs solu-
tion represents a cost minimization without regard
for costs because of unforeseen delays. We use the
corresponding aircraft routings and crew pairings to
form our Base Case to which we apply our iterative
integrated approach to reduce total propagated delay.
We use 10 aircraft and 16 crew pairs in all instances
and all algorithms tested.

The mean primary aircraft and crew pairing delays
pii and pj; are randomly sampled from four different
probability distributions. In practice, primary aircraft
and crew pairing delays rarely correspond to a spe-
cific distribution but are rather a composite of several
causes of delays with different individual distribu-
tions that may vary throughout different times of the
day (Tu, Ball, and Jank 2008; Wu 2010). It is often dif-
ficult to extract bias-free, accurate historical data for
the expected primary aircraft and crew delay over a
specific connection. Thus, precise delay distributions
(and their means) for all connections are very difficult
to determine analytically. We therefore sample a set
of delays and use the values obtained to represent a
possible mean delay for each connection. To capture
the asymmetric nature of the aircraft and crew delays,
we sample from an exponential distribution E(A) with
mean 1/A in minutes and a truncated normal dis-
tribution (truncated to nonnegative delays), denoted
tN(w, 0®) with mean u and variance o, both in min-
utes. We test our new computational approach on
12 random instances: 3 instances from E(1/5), 3 from
E(1/10), 3 from tN (5, 100), and 3 from tN(10, 25). We
use unit costs per unit delay for all connections.

We study two simplified approaches (SSD) and
(SSP) in addition to our base case (B) and pro-
posed approach (IPD). We also compare our results
with the method of Weide, Ryan, and Ehrgott (2009),
denoted W, as well as a proposed improvement
to the method of Weide, Ryan, and Ehrgott (2009),
denoted WI:

1. Base (B):

—Step 1 of Algorithm 3.2, followed by Algo-
rithm 3.1 and Step 5 of Algorithm 3.2.

2. Routing and Crewing Solved Sequentially, Sim-
ple Delay (SSD):

—Steps 1, 2, 3 of Algorithm 3.2, followed immedi-
ately by Algorithm 3.1 and Step 5 of Algorithm 3.2.
In Algorithm 3.1, (5) is replaced with df = df —
(s —pij) and (6) is replaced with d]’ = d,’f — (34— P&)-
In Algorithm 3.2, (12) is replaced with ¢f =3, afd}
and (13) is replaced with ¢/ =Y., a PdP.
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3. Routing and Crewing Solved Sequentially, Prop-
agated Delay (SPD):

—Steps 1, 2, 3 of Algorithm 3.2, followed immedi-
ately by Algorithm 3.1 and Step 5 of Algorithm 3.2.

4. Routing and Crewing Integrated, Propagated
Delay (IPD):

—Algorithm 3.2.

5. The Algorithm of Weide, Ryan, and Ehrgott
(2009) (W)

—The algorithm as described in Weide, Ryan, and
Ehrgott In the absence of cost differentation for
different crew pairings, we set the crew pairing cost
to zero.

6. An Improved version of the Algorithm of Weide,
Ryan, and Ehrgott (2009) (WI)

—The algorithm W with an attempt to incorpo-
rate a “time-of-day” aspect based on expected pri-
mary delay. Compute restricted connections using the
scheduled slack minus the expected primary delay,
instead of scheduled slack.

The SPD approach will demonstrate the value of
calculating the more accurate, nonlinear propagated
delay over the simpler, less accurate linear delay of
the SSD approach. Our proposed IPD approach will
demonstrate the value of integrating routing and crew-
ing rather than simply performing them sequentially
as in the SPD approach. The SPD approach may be
viewed as an improvement over Lan, Clarke, and
Barnhart (2006) because we use the correct calcula-
tion of propagated delay in column selection and also
model interaction of aircraft and crew (see discus-
sion in §1.4). The IPD approach is an improvement
over AhmadBeygi, Cohn, and Lapp (2008) because
we correctly calculate the combined propagated delay
because of aircraft and crew; moreover, we develop
routing and crewing connections rather than retim-
ing existing connections. We also view IPD as an
improvement over Weide, Ryan, and Ehrgott (2009)
because our objective is in terms of a dollar cost,

which can be easily added to other operating cost
terms in a more sophisticated cost model. We com-
pare our IPD approach with model W and also with
the “improved” model WL

For each instance and each of the approaches
SSD, SPD, and IPD, we record in minutes the air-
craft delay, crew delay, total delay, and improvement
in total delay relative to the total delay incurred
by the base case. In each approach we apply the
evaluation Algorithm 3.1 to provide a consistent
means of comparison between each of the approaches.
Algorithm 3.2 takes between 3 and 16 iterations for the
12 instances tested, as indicated in the tables below.

We remark that we evaluated Algorithm 3.3 on the
same 12 instances and produced solutions that were
universally inferior to Algorithm 3.2. This is not unex-
pected because the routing strings are larger and less
flexible than are the crewing strings, and folklore sug-
gests making decisions on less flexible items first often
produces better results. The results for Algorithm 3.3
are thus not reported.

The IP was always solved at the root node by
column generation and did not require any fur-
ther branching. Because the network consisted of 54
flights, the master problem consisted of 54 set parti-
tioning constraints for both the aircraft routing and
crew pairing problems. Approximately 200 columns
were generated in an aircraft routing iteration and
approximately 120 in a crew pairing iteration.

We also solved (1) and (2) separately to minimize
the individual propagated delay because of aircraft
and crew, respectively. These values are tabulated
below, along with their sum, which represents a rig-
orous lower bound. This lower bound is unlikely to
be sharp because it completely ignores the additional
delays from the combination of aircraft and crew
delay; in some instances this combined effect can be
substantial. In most instances our IPD solution is close
to this lower bound; given the lack of sharpness of this

Table 1 Relative Improvements of the Algorithms SPD over SSD and IPD over SPD, SSD, W, and WI
(SSD-SPD)/SSD (SPD-IPD)/SPD (SSD-IPD)/SSD (W —IPD)/W (WI—1PD)/WI
Instance x100% x100% x100% x100% x100%
1 2.34 3.73 5.99 4.75 2.43
2 2.08 5.25 7.22 9.73 9.36
3 0.43 9.63 10.02 9.63 6.35
4 8.36 4.43 12.42 12.42 9.76
5 7.20 10.10 16.55 12.03 11.11
6 5.27 3.51 8.59 4.78 3.58
7 2.26 7.60 9.69 5.51 3.81
8 3.10 6.84 9.73 8.27 7.96
9 —2.51 8.50 6.20 12.05 11.68
10 13.48 2.92 16.00 13.07 12.80
1 4.57 10.44 1453 5.77 3.31
12 4.61 6.95 11.24 8.88 7.78
Average 4.27 6.67 10.68 8.91 7.49
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bound, the IPD solutions appear to be of high quality.
When running the algorithms W and WI, we found ) Percentage of

. . Aircraft Crew  Total Improvement Time
that because our network consists of many restricted

3 ” Approach delay  delay delay on B (s)
connections, we could not achieve a nonrobustness
. . Instance 5:
measure (NRM) of zero; Father, we terminated when B 999 1114 2113 - 15.53
the NRM could not be improved further, as stipu- 3SD 826 1,216 2,042 3.36 26.22
lated in Weide, Ryan, and Ehrgott (2009). For each  SPD 856 1,039 1,895 10.32 28.16
P instance, there were nine restricted aircraft changes in IPD (16 iter.) 825 879 1,704 19.36 214.19
D) . . . . _ _
=5 the final solution; eight of these may be classified as Lower bound 590 879 1,469
S 9 " . o L W (10 iter.) 895 1,042 1,937 — 12.75
£ less severe,” because the sit time exceeded the mini- vy (g jter) 890 1,027 1,917 _ 11.78
T 5 mum sit time by more than 15 minutes. Instance 6:
O S Our numerical results for Algorithm 3.2 are tabu- B 1,217 1,846 3,063 — 14.51
= @ lated bel Individual 1t . £ h SSD 1,117 1,653 2,770 9.57 22.34
oS lated below. Individual results are given for eac SPD 1,108 1516 2,624 1433 2319
*; s instance, followed by a summary in Table 1, detailing  IPD (4 iter) 1,032 1,500 2,532 17.34 92.35
e the relative improvements in delay between the algo-  Lower bound 994 1,456 2,450 — —
£3 rithms SSD, SPD, IPD, W, and WL All experiments =~ W (10iter) 1,070 1,589 2,659 - 12.75
= WI (10 iter.) 1,053 1,573 2,626 — 11.33
8= were done with CPLEX12.1 on a 2.4 GHz PC with ’ ¢ ’ ’ :
© © 4 GB RAM. Truncated normal distribution with u =5, ¢ =10.
% % Instance 7:
>§ Comparative Algorithms Performance fo Delays Drawn from B 438 665 1,103 - 14.19
8— g Four Distributions (12 instances) SsD 465 598 1,063 3.63 22.10
o ® SPD 441 598 1,039 5.80 25.46
02 . | Percentage of 4 IPD (4 iter.) 387 573 960 12.96 39.44
e S T et T a2 o4 -
=3 4 y deay dery W (10 iter.) 425 591 1,016 — 12.75
5 g Exponential distribution with mean A =5. WI (8 iter) 416 582 998 - 10.80
':g c Instance 1: Instance 8:
0 % B 214 316 530 — 9.17 B 536 650 1,186 — 13.31
© 0 SSD 155 229 384 27.55 21.53 SSD 503 689 1,192 —-0.51 24.75
-g g SPD 146 229 375 29.25 28.41 SPD 503 652 1,155 2.61 2591
v IPD (3 iter.) 132 229 361 31.89 47.19 IPD (7 iter.) 505 571 1,076 9.27 168.74
% o Lower bound 106 210 316 —_ — Lower bound 481 562 1,043 — —
£ 3 W (I0iter) 143 236 379 = — 12.75 W (10 iter.) 526 647 1173 — 12.75
® o WI (8 iter.) 138 232 370 — 12.48 WI (9 iter.) 524 645 1,169 — 12.56
._%’ 'E,, Instance 2: Instance 9:
= = B 367 395 762 — 9.10 B 274 562 836 — 15.11
o 8’ SSD 326 394 720 5.51 23.56 SSD 269 408 677 19.02 27.89
2 'g SPD 326 379 705 7.48 31.20 SPD 260 434 694 16.99 28.61
o0 IPD (8iter) 321 347 668 1234 68.01 IPD (6 iter.) 227 408 635 24.04 57.98
5 = Lower bound 177 335 512 — — Lower bound 168 401 569 — —
g- CC; W (10 iter.) 350 390 740 — 12.75 W (10 iter.) 267 455 722 — 12.75
(3] ..g WI (9 iter.) 349 388 737 — 10.77 WI (10 iter.) 267 452 719 — 11.14
% IS Instance 3: Truncated normal distribution with u =10, o =5.
° o B 158 316 474 —_ 10.15 Inst 10
<c SSD 164 295 459 3.16 23.41 nstance -
0= SPD 160 297 457 359 28.55 B 482 799 1,281 — 14.91
= . .
= c IPD (7iter) 116 297 413 1287 63.45 SSD 526 780 1,306 ~195 23.66
o g SPD 399 731 1,130 11.79 25.11
o3 Lowerbound = 104 275 379 - - IPD (4iter) 366 731 1,097 14.36 53.35
S W (10. iter) 141 316 457 — 12.75 Lower bound 31 08 Lol
= 1 (10 iter. 12 1 441 — 15.02 ’ - —
WI (10 iter) 6 315 >0 W (10 iter.) 470 792 1,262 - 12.75
Exponential distribution with mean A = 10. WI (7 iter.) 470 788 1,258 — 10.16
Instance 4: Instance 11:
B 341 544 885 — 8.12 B 895 1,134 2,029 — 14.70
SSD 312 501 813 8.14 24.21 SSD 804 1,144 1,948 3.99 24.18
SPD 267 478 745 15.82 29.50 SPD 825 1,034 1,859 8.38 25.67
IPD (4 iter.) 241 471 712 19.55 72.26 IPD (5 iter.) 721 944 1,665 17.94 61.72
Lower bound 185 468 653 — — Lower bound 682 920 1,602 — —
W (10 iter.) 312 501 813 — 12.75 W (10 iter.) 757 1,010 1,767 — 12.75

WI (10 iter.) 304 485 789 — 16.00 WI (8 iter) 746 976 1,722 — 9.98
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Percentage of

Aircraft Crew  Total Improvement Time

Approach delay delay  delay on B (s)
Instance 12:

B 446 616 1,062 — 15.04
SSD 437 604 1,041 1.98 19.58
SPD 442 551 993 6.50 20.01
IPD (8 iter.) 380 544 924 12.99 72.97
Lower bound 347 532 879 — —
W (10 iter.) 440 574 1,014 — 12.75
WI (10 iter.) 440 562 1,002 — 11.54

5. Discussion and Conclusions

Our iterative integrated methodology for minimizing
propagated delay in a combined routing and crewing
network has clear advantages over approaches that
do not explicitly calculate propagated delay or fail to
properly integrate routing and crewing.

¢ The value of integrating routing and crewing,
rather than sequentially minimizing propagated delay
in routing strings and then minimizing propagated
delay in crew strings, is clear from a comparison of
IPD and SPD delays in our 12 instances. There is uni-
versal improvement over all instances; on average,
our IPD approach improves by 6.7% over the SPD
approach.

¢ For the two sequential approaches tested, accu-
rately calculating propagated delay is an improve-
ment over using a simpler additive delay; 11 out of
the 12 instances showed an improvement. On aver-
age over the 12 instances, the SPD approach improves
over SSD by 4.3%.

¢ Finally, integrating routing and crew delays and
accurately calculating the propagated delays (our IPD
approach) is a clear and universal improvement over
SSD, with an average improvement of 10.7%.

When comparing our IPD approach with the
methodology of Weide, Ryan, and Ehrgott (2009), on
average our approach produced schedules with 8.91%
less total delay (IPD versus W) and 7.49% less total
delay (IPD versus our “improved” version of Weide,
Ryan, and Ehrgott 2009, WI). The delay reductions
over Algorithms W and WI are comparable to those
observed because (i) the correct propagated delay was
used in place of the simplified “summed” delay (SSD
versus SPD) and (ii) iteration was used in place of
sequential optimization (SPD versus IPD).

In this proof of concept work, we have limited
our study to minimizing expected propagated delay;
however, our methodology allows other extensions to
mitigate delay related risk. For example, it is straight-
forward to limit the maximum expected propagated
delay of any single flight. In Algorithm 3.7, one may
disallow the creation of a path with an unaccept-
ably high single flight delay cost in the same way
that crew strings of duration greater than H hours

are disallowed in Algorithm 3.9. Similarly, it is easy
to limit the total delay cost of either a routing or
crew string.

Our new integrated framework is in principle
extendable to a third aspect, such as delays because of
passengers. Future work will explore this possibility.
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